To: Gary Sandefur, Dean
 Eric Wilcofs, Associate Dean for Natural Sciences

From: Dr. Cathy Middlecamp
 Distinguished Faculty Associate
 Chemistry Learning Center, Director

Dr. Susan Nossal
 Associate Faculty Associate
 Physics Learning Center, Director

Date: September 17, 2009

Re: Madison Initiative for Undergraduates
 Chemistry and Physics: Gateway Science Courses for All

Our UW students cannot easily voice their requests. But if they could, our physics and chemistry students would be asking for — perhaps quite strongly — additional staff members at the Chemistry Learning Center and at the Physics Learning Center. Each semester, they come to our programs, asking us to help them better meet their learning needs and to achieve their goals. This proposal is their voice.

Cc: Professor Baha Balantekin, Physics Department, Chair
 Professor Mark Rzchowski, Physics Department, Associate Chair
 Professor Peter Timbie, Faculty Advisor, Physics Learning Center
 Professor Robert Hamers, Chemistry Department, Chair
 Professor Ned Silbert, General Chemistry Division, Chair
 Also teaching General Chemistry:
 Professor Judith Buratyn
 Professor Clark Landis
 Professor Gil Nathanson
 Also teaching General Physics:
 Professor Michael Winokur
 Dr. Manuela Romero, Executive Director, WiseAMP
 Dr. José Medera, Academic Advancement Program
 Dr. Devon Wilson, Academic Advancement Program, Director
An Opening Tale

About a decade ago, Northwest Airlines bought over a dozen Boeing 757-200 jets from Air France. People questioned the wisdom of this purchase, noting that these were older planes. "Why not purchase new jets?"

The company's rationale was simple. The Northwest pilots could fly these planes. They needed no training. The mechanics could service these planes. They had the parts and equipment. And the flight attendants already knew how to keep the cabin safe and (reasonably) comfortable. Furthermore, the 757 was a fine aircraft, perfect for medium distance hauls, which was exactly the capacity the airline needed.

In short, they bought the planes because they could immediately put them into circulation and get a quick payback on their investment.

This proposal takes the same approach. We at the Chemistry and Physics Learning Centers have the infrastructure to immediately make use of new staff members. We don't have to try out a new curriculum or learning protocols; we already have time-tested approaches. We don't need to invent an assessment instrument; we have one in place that has served well in earlier program reviews. Our request perfectly provides the "medium distance haul" that our students currently are so in need of.

In short, we hope that you will "buy" this proposal because it provides an immediate payback. More importantly, it will meet a pressing need of students in gateway chemistry and physics courses.

"As we move forward with the activation of her [Chancellor Martin's] framework, implementation of the Madison Initiative for Undergraduates, and build on lessons learned from our successful reaccreditation process, we know that our renewed strategic diversity agenda must focus on ways to quicken the work that is already taking place to increase access and equity for diverse groups, with a particular emphasis on historically underrepresented minorities and women, especially in the STEM (Science, Technology, Engineering, and Mathematics) areas."

Vice Provost Damon Williams, invitation to the 2009 Diversity Forum, September 11, 2009.
The Background: For our students, first year chemistry and physics courses can be either the first step towards achieving a dream – or the last one. The difficulties that students face, including our top students, have been well documented in monographs\(^1\), reports from the National Science Foundation\(^2\), and by recent national curriculum reform projects\(^3,4\).

When it comes to experiencing difficulties, our students here at the UW-Madison are no exception. A recent report on this campus, “The Undergraduate Achievement Gap,” shed new light on the difficulties with its finding that targeted minority undergraduates\(^5\) have higher rates of adverse outcomes than other students\(^6\). Science and math courses on our campus were among those with the worst track records. This report, although distressing, was no surprise to many of us.

We also have low numbers of targeted minority students pursuing majors in science (and remarkably low numbers of minority science PhD students). The Wisconsin Alliance for Minority Participation (WisAMP) program has documented how difficult it has been in the past 5 years to increase the numbers of targeted minority students in STEM disciplines, with the numbers not being high to begin with.

These difficulties stem from failures, not only of our students but also of our system. Admittedly, they are tough words to convey to the reader. But they are not new; they have been conveyed for decades by one constituency or another, both nationally and locally.

Failure in a science course is not simply receiving an “F” in a course. It also includes getting a D, an F, dropping, or any other outcome that delays or ends a science career. Although some students experience a failure and then recover academically, for most it is the end of a story rather than the beginning. The effects of this failure not only are felt by the student, but also these ripple through the communities from which these students came.

As documented by one of the authors of this proposal over 20 years ago\(^7\), failure is expensive for everyone: the student, the department, and the institution. Failure also is complex, not simply a matter of what the student did or did not do. Rather, failure stems

\(^2\) *Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology (NSF 96-139)*, National Science Foundation, 1996.

\(^3\) SENCER, www.sencer.net, one of many NSF national dissemination projects that has documented the reasons what we need to change how science is taught and proposes pedagogies and content by which to do so.

\(^4\) *Chemistry in Context*, a project of the American Chemical Society. Launched in the 80s, this project for non-science majors noted that students were learning to dislike chemistry in their courses. See paper #44 at the National Academies web site: http://www7.nationalacademies.org/hmda/PP_Commissioned_Papers.html.

\(^5\) “Targeted minority” for WisAMP includes African-American, Hispanic, and Native American. For the UW-Madison, it also includes Southeast Asian and Pacific Islander.

\(^6\) Jocelyn Miner and Bruce Beck, Academic Planning and Analysis, February 2008.

from a combination of factors including decisions made by the student, decisions made by the instructor, and decisions made at administrative levels of the institution. But decisions can also turn a ship in its course. For example, an administrative decision made in 1974 by then Dean of Letters & Science, E. David Cronon made a difference in the lives of now thousands of undergraduate chemistry students: to bring the Chemistry Learning Center (CLC) into existence. For over 30 years, this Center has successfully provided academic support to chemistry students. The program was audited by the UW-System in the 1990 and subsequently held up as a model for minority-disadvantaged programs. Among the reasons for its excellent review included measurable outcomes of the program including student satisfaction, target group effectiveness, and that time-on-task produces favorable academic outcomes. More recently, CLC students released on YouTube their own evaluation of the program. Please check the inaugural issue of L&S News and Notes (or footnote #7) for a link to the YouTube video, “CLC Love!”^8 Turn up the volume!

Over the years, the CLC grew to 4.5 FTE, now serving students in organic chemistry as well. The Undergraduate At-risk Initiative was the source of the additional funding.

In 1997, a second administrative decision took place to create the Physics Learning Center (PLC). This program, like the CLC, continues to have an excellent track record and has grown to 1.65 FTE plus student peer tutors. The PLC also was funded from the Undergraduate At-risk Initiative as well as from the College of Letters and Sciences. Both programs received temporary funds from the WiscAMP program. PLC also received seed funding from the outreach portions of several Physics Department NSF grants.

This proposal calls for one more decision, one that is both needed and timely. We ask the reviewers to increase the funding for the Chemistry and Physics Learning Centers.

The need: The Chemistry Learning Center (CLC) currently offers academic support for students enrolled in some, but not all general chemistry lecture sections. Typically the Center staffs half (4 out of 7 or 8) of the lecture sections in a given semester. For example, in the fall semester, 3 out of 5 or 6 sections of Chemistry 103, 1 out of 1 section of Chemistry 104, and 0 out of 1 section of Chemistry 108. This proposal will provide the staff to cover all lectures sections of all three of these gateway chemistry courses.

The Physics Learning Center (PLC) offers academic support for students enrolled in both semesters of the algebra-based Physics 103-104 sequence, and limited support for students in the calculus-based Physics 207-208 sequence. In both course sequences, student demand far exceeds the capacity of staff members to serve them. This proposal aims to hire the staff needed to offer academic support to students in both of these gateway physics course sequences.

Frankly, the extent of the need is difficult to document. Both the PLC and the CLC “hide” their services from the general student population. Were these Centers to openly advertise their services, they would be faced with an even higher demand for student services than they currently experience.

Both Centers use the term “at-risk” to describe the students they serve. This term has been used for several decades on our campus. Students are considered “at risk” for receiving a low grade or dropping for both academic and social reasons. The former stems from their academic backgrounds; the latter stems from climate-related issues that for one reason or another make it difficult to find study partners and engage with others to achieve their learning goals. In some cases, the risk factors are determined by other campus programs (e.g., Academic Advancement Program (AAP), TRIO, Pre-College Enrichment Opportunity Program for Learning Excellence (PEOPLE), McBurney Center); in others, they use factors including age, transfer status, membership in a UW designated historically underrepresented group, cumulative GPA, current course performance, and previous course performance to determine risk.

The courses served by the Chemistry and Physics Learning Centers have enrollments ranging from 150 to 650 students. These courses are gateways for many programs, including those in the biological and physical sciences, engineering, pre-health, and secondary education. Students enrolled in these courses who are “at-risk” are usually best-served by smaller group instruction that facilitates peer interaction. Given our current course designs, this is not feasible to implement large-scale.

The number of at-risk students far exceeds the number we can support creating an academic void for the students needing the support, a gap between the faculty who refer the struggling students and the support these faculty want to provide their students, and a cost in human terms for the students turned away and set adrift without the guidance and assistance they require.

The timeliness: Our Centers, together with other programs on campus, has been discussing the recent data on the “Undergraduate Achievement Gap.” We have a successful and strong track record at both Centers. Although by ourselves we cannot entirely close this gap, we nonetheless are one factor that helps at-risk students both succeed academically in their chemistry and physics courses, and feel positive about their experience and abilities for success.

The benefits: Students would be the primary benefactors, but chemistry and physics instructors and their Teaching Assistants would also gain in terms of having additional academic support for students. In addition, the less quantifiable but no less important benefit of having students succeed cannot be overstated (failure has both a high human and monetary cost). Indeed, all benefit when there is a coherent program of student support that is responsive to individual student needs. Each semester, about 125 additional students (25-30 students in each of the additional lecture sections, 250 total)

9 Some strongly urge that we use the term “at-risk” courses rather than labeling the students as such. We take the stance that failure is complex, and stems from multiple factors, including the student.
would receive academic support from the CLC and the PLC. See Appendix A for data about at-risk student populations.

Students would benefit also from being hired to serve as peer mentor tutors, obtaining teaching and leadership experience. This proposal would increase their number. Current tutors receive ongoing training and supervision. The Peer Mentor Tutors strengthen their confidence and abilities in chemistry and physics and in their communication skills, and form a supportive community for each other. Some CLC and PLC participants have later become peer tutors and we are working toward increasing this number, especially as our program for the calculus-based physics course expands. The Centers have had peer mentor tutors who are in the pre-secondary science education program and who report that teaching the college introductory curriculum is valuable preparation for their secondary science teaching.

The synergy that will result (including cross-campus partnerships): The CLC and PLC already work in close coordination with advisers and programs across campus. We also already work closely with faculty in our own departments. With (some of) the pressure off of us from students, we will attend more closely to making use of existing technologies on campus to more seamlessly share data on student attendance, student performance, and student concerns about their studies. Currently, for example, we are piloting a system to report student attendance at tutorial classes to advisors in CEO and AAP.

This proposal also supports the goals of a MIU proposal from the Department of Physics for the development of a calculus-based physics course for biologists entitled “Development of an introductory physics course for undergraduates majoring in the biological sciences”. We often see students who are reluctant to take the calculus-based course, even if they have strong math background. We will encourage students, especially from underrepresented groups, to enroll in the Physics 207-208 courses with support from our expanded PLC program for these courses. PLC staff would work in collaboration with the Physics 207-208 development team and would share materials between both programs.

Here are some examples of existing partnerships. Currently, both the Chemistry and Physics Learning Centers
- Are part of the Madison Working Group of the NSF-funded Wisconsin Alliance for Minority Participation in STEM fields (WiscAMP).
- Receive referrals from other academic support and retention programs on campus, including the Center for Educational Opportunity (CEO, previously TRIO), the Academic Advancement Program (AAP), the Pre-college Enrichment Opportunity Program for Learning Excellence (PEOPLE), the Chancellor’s and Powers Knapp Scholarship Programs, and the McBurney Disability Resource Center.
- Receive referrals from course faculty and teaching assistants.
- Share data with academic advisors, especially those in the AAP, CEO and PEOPLE programs.
• Work with instructors in the targeted courses, striving to jointly give the students the best learning experience possible.

Assessment and Evaluation: Both Centers maintain careful student records that include student demographic data, date of intake, attendance at center activities, and academic outcomes. In addition, the Chemistry Learning Center has been (successfully) reviewed by UW System and in the 1990s submitted annual reports to the University Minority Information System yearly. Three types of data are used for evaluation, both formative and summative:

- **Target group effectiveness.** For example, of the Hispanic students in a lecture section, what % of those invited to join chose to participate? (Note: we are strategic in our use of “risk” factors. Being Hispanic does not necessarily put a student at risk. But in combination with other factors, it does.)

- **Grade received in course.** For example, we are willing to be accountable for the success of a student if he or she spends on average one hour a week at the Center. For these students, we report (collectively) how the student did with respect to the class average. Many students spend upwards of 30 hours a semester working with us.

- **Student evaluations.** For example, at the end of every semester, students fill out an evaluation form. The response over the years has been overwhelmingly positive (and a bit eye-opening about how students report things would have gone for them in the absence of the Centers).

We will continue to implement evaluation practices, such as these, that currently are in use.

Hiring and Recruitment Strategy: Both Centers have carried out searches over the years, successfully navigating the protocols and having hired and retained top-notch staff academic members. The Chemistry Learning Center has a long track-record of diversity in its hires, which is true with its current staff as well. The Physics Learning Center has been increasing the diversity through its pool of Peer Mentor Tutors who include women, members of UW targeted minority groups, and students from our campus partner programs.

We recruit for Undergraduate Peer Mentor Tutors through identifying excelling student participants in the Chemistry and Physics Learning Centers, announcements in intermediate level physics courses, emails to the Physics Club and Physics Majors lists, word of mouth by present undergraduate tutors, and posters. Increased staff resources would facilitate our ability to expand our relationship building with the School of Education and with student organizations such as the National Society for Black Engineers (NSBE), The National Society of Hispanic Engineers (NSHE), and the American Indian Science and Engineering Society (AISES) and offer opportunities to students in these groups to become science Peer Mentor Tutors.
The alignment w. the Madison Initiative: The initiative aims to “ensure that UW-Madison can provide critical student services, such as academic and career advising, and peer-mentoring programs to prepare them more effectively for a changing world of work.” Our Chancellor also calls for projects that are “truly transformative.”

Since inception, our programs have been transformative for the lives of our students. To this end, our Deans over the years in the College of Letters & Science have supported us since day one. We also have received support – in many cases enthusiastically so – from the faculty members who teach the gateway courses. Any concerns about the program have not been in regards to whether or not we have been doing our job; actually, we have done it all too well and minority students have been successfully gaining entry into fields of their choice. Rather, the concerns have arisen because resources are short and we cannot choose to fund everything simultaneously.

We offer strong evidence that the CLC and the PLC are exactly the arena in which currently we need to deploy additional funding. The students need champions and we provide this. The students need opportunities to work in small groups, and we have demonstrated that this is effective. We make it possible for many students to transform their own lives. And they do!

We recognize that in an ideal university setting, neither the CLC nor the PLC should be needed. But for our students both at the UW-Madison and more widely across the country, things are not yet ideal in chemistry and physics courses. Our courses are well designed, but there are still some weaknesses in the course structures, especially in the case of large classes. Our instructors, while in almost every case excellent, are not uniformly so. Our Teaching Assistants are well-trained, but even well-trained TAs do not have sufficient time and expertise to meet the individual needs of students. Our students, again while generally excellent, similarly come to our courses with background deficiencies. And our campus climate, while positive for most students, is more positive for some than others.

At the CLC and the PLC we combine excellent instruction with students who are seeking it, and provide a climate that truly is supportive of all. A win-win-win.

Budget:

Four 9-month FTE (academic staff)
(2 @ ~$45,000 in Chemistry Learning Center*) ~$90,000 + benefits
(2 @ ~$45,000 in Physics Learning Center*) ~$90,000 + benefits

10 Peer Mentor Tutors
($2,000 each per year) $20,000

TOTAL $200,000 + benefits

*Actual salary would be commensurate with degree (minimum Masters level) and experience (minimum several years college level teaching of general chemistry or physics), but would be about $45,000 each.
Appendix A
Pool of at-risk students who are and could be served by the PLC and CLC

Students with risk factors - Introductory Physics Courses (Fall 2009 data)

<table>
<thead>
<tr>
<th>Course</th>
<th>Total # Students</th>
<th>Total # Targeted*</th>
<th># age ≥25</th>
<th>Targeted Minority</th>
<th>GPA < 2.5</th>
<th>AAP or CEO**</th>
<th>PEOPLE or POSSE**</th>
<th>Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>636</td>
<td>154</td>
<td>22</td>
<td>57</td>
<td>54</td>
<td>15</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>104</td>
<td>304</td>
<td>60</td>
<td>11</td>
<td>21</td>
<td>31</td>
<td>5</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>207</td>
<td>284</td>
<td>53</td>
<td>5</td>
<td>16</td>
<td>16</td>
<td>4</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>208</td>
<td>146</td>
<td>29</td>
<td>4</td>
<td>8</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

*This number is less than the total of the risk factors because students may fall in several categories.
For example, some PEOPLE and POSSE students may be AAP students.
**The AAP/CEO and PEOPLE/POSSE numbers are preliminary for fall semester 2009. The numbers are higher.

Currently served by PLC = 100
Total Targeted = 296
of students able to be served if this grant is funded = an additional 125 students

Students with risk factors - Introductory Chemistry Courses (Fall 2009 data)

<table>
<thead>
<tr>
<th>Course</th>
<th>Total # Students</th>
<th>Total # Targeted</th>
<th># age ≥25</th>
<th>Targeted Minority</th>
<th>GPA < 2.1</th>
<th>AAP/CEO</th>
<th>PEOPLE/POSSE</th>
<th>ACT composite <22</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>1840</td>
<td>250</td>
<td>15</td>
<td>162</td>
<td>16</td>
<td>32</td>
<td>20</td>
<td>39</td>
</tr>
<tr>
<td>104***</td>
<td>362</td>
<td>100</td>
<td>12</td>
<td>58</td>
<td>34</td>
<td>31</td>
<td>14</td>
<td>36</td>
</tr>
<tr>
<td>108</td>
<td>200</td>
<td>50</td>
<td>18</td>
<td>23</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>23</td>
</tr>
</tbody>
</table>

*This number is an estimate. It is less than the total of the risk factors because students may fall in several categories. In addition, the CLC has other academic risk factors that are not shown in this table.
**The AAP/CEO and PEOPLE/POSSE numbers are preliminary for fall semester 2009.
*** Off semester, higher-risk group.

Currently served in general chemistry by CLC = 130-140
Total Targeted = 400
of students able to be served if this grant is funded = an additional 125 students

Note #1: If you check the math, you will see that the additional funding will not "cover" all of the targeted students. This is correct. Some of the targeted students will not need help. In addition, some of the student who need help will not seek help.

Note #2: Numbers conceal the fact that real people involved.
Appendix B (next page) is offered as an example of the human element.
Appendix B – Students, not numbers.

Messages sent September 2009
(selected from a set; we sent out dozens of rejection letters at the CLC)

Dear Tony,

That is disappointing. Last year, I had to teach myself everything, everything, and it was hell. I had more time on my hands but I put more time into chem than any other class and hurt my GPA. I didn't do well in my other classes. This semester I have to do good in all my classes because I want to transfer into the college of engineering. And on top of it this semester is very stressful. Last year I was in no extracurriculars and this year I am in 2 maybe 3 dance troupes, I have volunteering and a job and may need to get another to pay for rent. I'm having some unnecessary stress on top of it all and it's been a struggle just to read the chem book. I am trying. I assumed this year I would be able to get help since I got pushed out of the way last time. It's just disappointing. I know it's not your fault, the whole situation just stinks.

Thanks for your help,
[name withheld]

----- Original Message -----
From: Tony Jacob <atjacob@wisc.edu>
Date: Monday, September 7, 2009 9:55 pm
Subject: Chemistry Learning Center

Hi [NAME WITHHELD],

More than 50 students came by last week to enroll in the CLC, and since I'm working in 2 classes this semester (Chem 103 and Chem 104) and the fact that I have to leave myself a little wiggle room for students who fail their first exam, I'm already more than full. :(

So unfortunately, I'm going to have to place you on a waiting list again for now. Sorry about that. I try not to place a student on the waiting list twice but I know how strong of a student you were last semester so I'm confident things will go well for you again this semester. I will of course touch base with you just to make sure all is well, and my handouts will be available again if you'd like them.

Unfortunately, the CLC has only 5 staff members working with students - and there are over 5,000 students in general/organic chem classes. We do the best we can, but we can only do so much.

Sorry about this; I hope you can understand the limitations we face.
September 15, 2009

Dr. Cathy Middlecamp
Distinguished Faculty Associate
Chemistry Learning Center, Director

Dr. Susan Nossal
Associate Faculty Associate
Physics Learning Center, Director

Dear Cathy and Susan,

The Wisconsin Alliance for Minority Participation (WisAMP) is pleased to support your Madison Initiative for Undergraduates proposal entitled “Chemistry and Physics: Gateway Science Courses for All.” The program you are proposing is thoughtful and well designed, but most importantly, it **directly supports the academic success of underrepresented minority (URM) students** in Science, Technology, Engineering, and Mathematical (STEM) fields.

Chemistry and Physics are gateway courses for students in the biological and physical sciences and in engineering. Currently, student demand for academic support in chemistry and physics exceeds the staffing capacity to meet this need. Both Centers have the same staffing difficulties: 1) some gateway courses go unsupported and 2) the demand in other courses is so great that some students are underserved or go without services. Social and academic support, particularly academic enrichment such as that provided by your centers is critical to the academic success not only of URM students, but of all students. As you know, WisAMP has provided short-term seed funding to both Centers to help demonstrate student interest in these services. WisAMP funds allowed the both centers to expand its level of services. WisAMP is committed to working with you in helping you meet this need.

As you know, WisAMP was established through the NSF Louis Stokes Alliance for Minority Participation (LSAMP) Program in 2004 and in our recent renewal, we were asked that we provide funding directly to students and so we have had to redirect our funding. WisAMP is an alliance of 25 public and private institutions of higher education in Wisconsin. Collectively, we are committed to increasing the number of underrepresented minority students receiving baccalaureate degrees in science and engineering. Supporting students through critical junctures, such as increasing success in first-year courses is paramount to our overall success and having centers such as yours helps us help students succeed. We look forward to working with you in achieving this goal.

WisAMP wholeheartedly endorses your work.

Sincerely,

[Signature]

Manuela Romero, Ph.D.
Co-PI and Executive Director
September 10, 2009

Gary Sandefur, Dean
Eric Wilcots, Associate Dean for Natural Sciences
College of Letters and Science
University of Wisconsin - Madison
Madison, Wisconsin 53706

Dear Gary and Eric,

Basic knowledge of Physics and Chemistry is continually becoming more important in a diverse range of science and technology fields. In Physics, we see evidence of this in the dramatically increasing enrollment of our General Physics courses. As a broader range of students require an understanding of physics for their major field, the number needing additional help beyond the lecture, discussion, laboratory, and office hours expands. The Physics Learning Center has for several years provided those services in small-group settings that have proven comfortable and effective for students from a wide range of backgrounds.

The proposed increase in support will provide the necessary increased student accessibility to the Physics Learning Center, and will help the department in attaining its goal of making accessible to all students the physics competency required for success in modern science and technology fields. The Physics Department strongly supports the proposal.

Sincerely,

[Signature]

A. Bahar Balantekin
Eugene P. Wigner Professor and Chair
Department of Physics

Department of Physics
A. Bahar Balantekin, Department Chair
www.physics.wisc.edu
2320 Chamberlin Hall
Telephone: (608) 262-4626

1150 University Avenue
Fax: (608) 262-3077
Madison, Wisconsin 53706-1390
Email: bahar@physics.wisc.edu
MEMORANDUM

October 1, 2009

TO: Madison Initiative Oversight Committee
FROM: Gary Sandefur, Dean, College of Letters and Science
Re: Non-instructional Madison Initiative Proposals

The College of Letters and Science is pleased to forward the attached proposals for:
- Eliminating Academic Deficiencies for L&S Students
- Expansion of the F/Gs program
- Expansion of the Chemistry and Physics Learning Centers

These proposals are self-explanatory, so we do not discuss them in this cover memo.

We received 30 proposals for the October 1, 2009 deadline. We consider these three to be the most pressing.

Among the 27 proposals we are not submitting are several really good ideas. A number of departments requested support for advising. Several of these requests, especially in high demand majors such as Biology, Communication Arts, Economics, Psychology, Political Science, and Pre-Health Professions are very compelling. For the November deadline, we will propose a comprehensive advising plan for L&S, which will utilize a combination of centralized, department-based, and “pod-based” academic and career advising. Our plan will also include the use of peer advisors and satellite locations, along with clearly articulated goals and assessment plans. These initiatives will enable the College of Letters and Science to connect with significantly more liberal arts students helping them to understand and embrace the Wisconsin Experience.

We hope to partner with CALS and other schools and colleges on advising for Biology and Pre-Health Professions. We encourage the university to take a comprehensive look at advising and to develop a coordinated campus approach to advising needs rather than funding specific advising proposals piecemeal over the next four years.

Attachments